59 research outputs found

    Distributed bounded-error state estimation for partitioned systems based on practical robust positive invariance

    Full text link
    We propose a partition-based state estimator for linear discrete-time systems composed by coupled subsystems affected by bounded disturbances. The architecture is distributed in the sense that each subsystem is equipped with a local state estimator that exploits suitable pieces of information from parent subsystems. Moreover, differently from methods based on moving horizon estimation, our approach does not require the on-line solution to optimization problems. Our state-estimation scheme, that is based on the notion of practical robust positive invariance developed in Rakovic 2011, also guarantees satisfaction of constraints on local estimation errors and it can be updated with a limited computational effort when subsystems are added or removed

    Plug-and-Play Fault Detection and control-reconfiguration for a class of nonlinear large-scale constrained systems

    Get PDF
    This paper deals with a novel Plug-and-Play (PnP) architecture for the control and monitoring of Large-Scale Systems (LSSs). The proposed approach integrates a distributed Model Predictive Control (MPC) strategy with a distributed Fault Detection (FD) architecture and methodology in a PnP framework. The basic concept is to use the FD scheme as an autonomous decision support system: once a fault is detected, the faulty subsystem can be unplugged to avoid the propagation of the fault in the interconnected LSS. Analogously, once the issue has been solved, the disconnected subsystem can be re-plugged-in. PnP design of local controllers and detectors allow these operations to be performed safely, i.e. without spoiling stability and constraint satisfaction for the whole LSS. The PnP distributed MPC is derived for a class of nonlinear LSSs and an integrated PnP distributed FD architecture is proposed. Simulation results in two paradigmatic examples show the effectiveness and the potential of the general methodology

    ENIGMA-A centralised supervisory controller for enhanced onboard electrical energy management with model in the loop demonstration

    Get PDF
    A centralised smart supervisor (CSS) controller with enhanced electrical energy management (E2-EM) capability has been developed for an Iron Bird Electrical Power Generation and Distribution System (EPGDS) within the Clean Sky 2 ENhanced electrical energy MAnagement (ENIGMA) project. The E2-EM strategy considers the potential for eliminating the 5 min overload capability of the generators to achieve a substantial reduction in the mass of the EPGDS. It ensures optimal power and energy sharing within the EPGDS by interfacing the CSS with the smart grid network (SGN), the energy storage and regeneration system (ESRS), and the programmable load bank 1 secondary distribution board (PLB1 SDU) during power overloads and failure conditions. The CSS has been developed by formalizing E2-EM logic as an algorithm operating in real time and by following safety and reliability rules. The CSS undergoes initial verification using model-in-the-loop (MIL) testing. This paper describes the EPGDS simulated for the MIL testing and details the E2-EM strategy, the algorithms, and logic developed for the ENIGMA CSS design. The CSS was subjected to two test cases using MIL demonstration, and based on the test results, the performance of the ENIGMA CSS is verified and validated

    Plug and Play Distributed Model Predictive Control Based on Distributed Invariance and Optimization

    Get PDF
    Abstract—This paper presents a method for plug-and-play distributed MPC of a network of interacting linear systems. The previously introduced idea of plug and play control addresses the challenge of performing network changes in the form of subsystems that are joining or leaving the network during closed-loop operation, while maintaining stability and constraint satisfaction. This work extends these ideas to an iterative distributed MPC scheme for systems with strong coupling by employing a recently proposed method for distributed MPC that takes the coupling dynamics into account in the form of time-varying terminal sets and distributed optimization. A distributed synthesis procedure for the update of the local control laws is proposed together with a transition scheme preparing the system for the upcoming modifications. This enables automatic plug-and-play operation, including rejection if the new network topology is infeasible. Both the synthesis and online control are entirely distributed and are only based on local information on the subsystems and their coupled neighbors. Finally, the proposed scheme is applied to the problem of frequency control in a power network

    Fault diagnosis for uncertain networked systems

    Get PDF
    Fault diagnosis has been at the forefront of technological developments for several decades. Recent advances in many engineering fields have led to the networked interconnection of various systems. The increased complexity of modern systems leads to a larger number of sources of uncertainty which must be taken into consideration and addressed properly in the design of monitoring and fault diagnosis architectures. This chapter reviews a model-based distributed fault diagnosis approach for uncertain nonlinear large-scale networked systems to specifically address: (a) the presence of measurement noise by devising a filtering scheme for dampening the effect of noise; (b) the modeling of uncertainty by developing an adaptive learning scheme; (c) the uncertainty issues emerging when considering networked systems such as the presence of delays and packet dropouts in the communication networks. The proposed architecture considers in an integrated way the various components of complex distributed systems such as the physical environment, the sensor level, the fault diagnosers, and the communication networks. Finally, some actions taken after the detection of a fault, such as the identification of the fault location and its magnitude or the learning of the fault function, are illustrated

    Stochastic Fault Detection in a plug-and-play scenario

    Get PDF
    This paper proposes a novel stochastic Fault Detection (FD) approach for the monitoring of Large-Scale Systems (LSSs) in a Plug-and-Play (PnP) scenario. The proposed architecture considers stochastic bounds on the measurement noises and modeling uncertainties, providing probabilistic time-varying FD thresholds with guaranteed false alarms probability levels. The monitored LSS consists of several interconnected subsystems and the designed FD architecture is able to manage plugging-in of novel subsystems and un-plugging of existing ones. Moreover, the proposed PnP approach can perform the unplugging of faulty subsystems in order to avoid the propagation of faults in the interconnected LSS. Analogously, once the issue has been solved, the disconnected subsystem can be re-plugged-in. The reconfiguration processes involve only local operations of neighboring subsystems, thus allowing a scalable architecture. A consensus approach is used for the estimation of variables shared among more than one subsystem; a method is proposed to define the time-varying consensus weights in order to allow PnP operations and to minimize at each step the variance of the uncertainty of the FD thresholds. Simulation results on a Power Network application show the effectiveness of the proposed approach

    Plug-and-play fault detection and isolation for large-scale nonlinear systems with stochastic uncertainties

    Get PDF
    This paper proposes a novel scalable model-based fault detection and isolation approach for the monitoring of nonlinear large-scale systems, consisting of a network of interconnected subsystems. The fault diagnosis architecture is designed to automatically manage the possible plug-in of novel subsystems and unplugging of existing ones. The reconfiguration procedure involves only local operations and communication with neighboring subsystems, thus, yielding a distributed and scalable architecture. In particular, the proposed fault diagnosis methodology allows the unplugging of faulty subsystems in order to possibly avoid the propagation of faults in the interconnected large-scale system. Measurement and process uncertainties are characterized in a probabilistic way leading to the computation, at each time-step, of stochastic time-varying detection thresholds with guaranteed false-alarms probability levels. To achieve this goal, we develop a distributed state estimation scheme, using a consensus-like approach for the estimation of variables shared among more than one subsystem; the time-varying consensus weights are designed to allow plug-in and unplugging operations and to minimize the variance of the uncertainty of the fault diagnosis thresholds. Convergence results of the distributed estimation scheme are provided. A novel fault isolation method is then proposed, based on a generalized observer scheme and providing guaranteed error probabilities of the fault exclusion task. Detectability and isolability conditions are provided. Simulation results on a power network model comprising 15 generation areas show the effectiveness of the proposed methodology

    Hycon2 Benchmark: Power Network System

    No full text
    As a benchmark exercise for testing software and methods developed in Hycon2 for decen- tralized and distributed control, we address the problem of designing the Automatic Genera- tion Control (AGC) layer in power network systems. In particular, we present three different scenarios and discuss performance levels that can be reached using Centralized Model Predic- tive Control (MPC). These results can be used as a milestone for comparing the performance of alternative control schemes. Matlab software for simulating the scenarios is also provided in an accompanying file
    • …
    corecore